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Determining how microbial communities organize and function at the ecosystem level

is essential to understanding and predicting how they will respond to environmental

change. Mathematical models can be used to describe these communities, but

properly representing all the biological interactions in extremely diverse natural microbial

ecosystems in a mathematical model is challenging. We examine a complementary

approach based on the maximum entropy production (MEP) principle, which proposes

that systems with many degrees of freedomwill likely organize to maximize the rate of free

energy dissipation. In this study, we develop an MEP model to describe biogeochemistry

observed in Siders Pond, a phosphate limited meromictic system located in Falmouth,

MA that exhibits steep chemical gradients due to density-driven stratification that

supports anaerobic photosynthesis as well as microbial communities that catalyze redox

cycles involving O, N, S, Fe, and Mn. The MEP model uses a metabolic network

to represent microbial redox reactions, where biomass allocation and reaction rates

are determined by solving an optimization problem that maximizes entropy production

over time, and a 1D vertical profile constrained by an advection-dispersion-reaction

model. We introduce a new approach for modeling phototrophy and explicitly represent

oxygenic photoautotrophs, photoheterotrophs and anoxygenic photoautotrophs. The

metabolic network also includes reactions for aerobic organoheterotrophic bacteria,

sulfate reducing bacteria, sulfide oxidizing bacteria and aerobic and anaerobic grazers.

Model results were compared to observations of biogeochemical constituents collected

over a 24 h period at 8 depths at a single 15m deep station in Siders Pond. Maximizing

entropy production over long (3 day) intervals produced results more similar to field

observations than short (0.25 day) interval optimizations, which support the importance

of temporal strategies for maximizing entropy production over time. Furthermore, we

found that entropy productionmust bemaximized locally instead of globally where energy

potentials are degraded quickly by abiotic processes, such as light absorption by water.

This combination of field observations andmodeling results indicate that natural microbial

systems can be modeled by using the maximum entropy production principle applied

over time and space using many fewer parameters than conventional models.

Keywords: maximum entropy production, microbial biogeochemistry, metabolic networks, phototrophy,

community function, meromictic
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INTRODUCTION

Mass and energy flow associated with the growth and predation
of bacteria, archaea and eukaryotes in microbial food webs,
coupled with abiotic reactions and transport processes, define
biogeochemical cycles that occur in ecosystems ranging in
size from less than a liter (Marino et al., 2016) to the entire
planet. Because organisms are ultimately responsible for most
observed biogeochemical transformations, it is customary and
natural to focus on the bioenergetics of growth and predation
of organisms that constitute food webs in order to understand
and predict biogeochemical transformations. This organismal
focus has a long history and has advanced our understanding
and prediction of ecosystem dynamics and the mass and energy
flow through them (Riley, 1946; Fasham et al., 1990; Le Quere
et al., 2005; Friedrichs et al., 2007; Schartau et al., 2017).
While focusing on the growth, predator-prey and cooperative
interactions of organisms will continue to contribute to our
understanding of ecosystem bioenergetics, there are some
challenges that limit this approach for microbial systems that
form the basis of biogeochemical cycles. Microbial communities
are diverse, complex and abundant, consisting, for example, of
approximately 109 microorganisms per liter of seawater, with
estimates that Earth hosts close to 1 trillion microbial species
(Sogin et al., 2006; Locey and Lennon, 2016). With the advent of
metagenomics, next generation sequencing and bioinformatics,
the challenging task of deciphering and annotating the metabolic
capabilities and activities of bacteria and other microorganisms
has begun, but determining how information in genomes
contributes to competition and cooperation is still in its infancy
(Hallam and McCutcheon, 2015; Pasternak et al., 2015; Worden
et al., 2015). Even more challenging is understanding and
predicting community composition dynamics and succession
as environmental conditions change, both from exogenous and
endogenous drivers (Konopka et al., 2015). While considerable
progress is being made in developing predictive models of
biogeochemistry based on organisms and the genes they carry
(Reed et al., 2014; Coles et al., 2017), the ability for this
approach to encompass the complex biogeochemistry of the
ecosystem will likely take many decades to compile and
decipher. We believe the reductionist approach is essential,
but there is also a complementary approach to understanding
microbial biogeochemistry that is less studied and uses a more
thermodynamic, or whole systems, approach.

Understanding how ecosystems function at the systems level
has a long tradition in theoretical ecology (Chapman et al.,
2016; Vallino and Algar, 2016), with the underlying premise that
ecosystems organize so as to maximize an objective function,
such as maximizing power proposed by Lotka (1922) nearly
100 years ago. The advantage of the systems approach is that
optimization can be used to determine how an ecosystem
will organize and function without the knowledge of which
organisms are present and how their population changes over
time. Understanding and modeling of ecosystems can focus
on function rather than on organisms, and there is growing
support that stable function arises from dynamic communities
(Fernandez et al., 1999; Fernandez-Gonzalez et al., 2016; Louca
and Doebeli, 2016; Needham and Fuhrman, 2016; Coles et al.,

2017). Here, we build upon the assumption that microbial
systems organize to use all available energy sources. To use
the correct thermodynamic term, living organisms use Gibbs
free energy, since energy is conserved, but Gibbs free energy
(aka usable energy) is not. The destruction of Gibbs free
energy or energy potentials results in entropy production, so
the net action of life produces entropy, because contrary to
conventional wisdom, living organisms are not low entropy
structures (Morrison, 1964; Blumenfeld, 1981). This allows us
to employ the maximum entropy production (MEP) principle,
which proposes that systems with sufficient degrees of freedom
will likely organize to maximize the dissipation of Gibbs free
energy (Dewar, 2003; Lorenz, 2003; Martyushev and Seleznev,
2006). In an ecological context, if food (which includes organisms
themselves) is available but not being consumed, then organisms
will eventually adapt, invade or evolve to utilize it if biologically
possible. This simple concept forms the basis of this manuscript.
The MEP principle has been applied to both abiotic and biotic
processes (Kleidon and Lorenz, 2005; Kleidon et al., 2010; Dewar
et al., 2014b), and we have usedMEP tomodel periodically forced
methanotrophic microbial communities (Vallino et al., 2014) and
investigate metabolic switching in nitrate reducing environments
(Algar and Vallino, 2014). While MEP is consistent with
Darwinian evolution, and likely guides its trajectory (Goldenfeld
and Woese, 2011; Skene, 2015, 2017; Judson, 2017), it has yet to
gain general acceptance in theoretical or experimental ecological
communities largely because of an insufficient number of case
studies and uncertainty in how to apply it.

In this study we develop an MEP-based model to predict
microbial biogeochemistry in a meromictic pond located
in Falmouth, MA (Siders Pond) that includes metabolic
processes for phytoplankton, green sulfur bacteria, aerobic
organoheterotrophic bacteria, sulfate reducing bacteria,
sulfide oxidizing bacteria, photoheterotrophs and aerobic
and anaerobic predators (Figure 1). However, the model’s
objective function is to dissipate energy potentials, not
grow organisms. While previous MEP models have been
developed for chemolithoautotrophs, chemolithoheterotrophs,
and chemoorganoheterotrophs, this study expands the
metabolic reaction repertoire to include photoautotrophs
and photoheterotrophs. The approach is also extended to include
an explicit spatial dimension, and we compare model output
to observations in Siders Pond collected over a 24 h sampling
period from eight depths. MEP solutions using two different
optimization timescales (0.25 day vs. 3.0 days) are contrasted
and compared to observations, and we discuss the problem of
local vs. global MEP optimization for energy potentials that
are quickly dissipated abiotically, such as light. Our results
suggest that microbial systems in nature can be described by the
maximum entropy production conjecture applied over time and
space.

RATIONALE

Our interest in investigating the applicability of MEP theory for
describing microbial communities has, in addition to the basic
science question, an applied objective. Standard models used to
describe microbial biogeochemistry contain a large number of
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poorly constrained parameters, such as maximum growth rates,
substrate affinity constants, growth efficiencies, prey preferences,
substrate inhibition constant, and others. Consequently, data
are required to determine parameter values, but since there is
almost always more parameters than constraining observations,
it is not difficult to obtain good agreement between model
output and observations. Consequently, a good model fit does
not equate to an understanding of the underlying mechanisms
in a system. As a consequence, such models usually do poorly
when extrapolated to different systems (Vallino, 2000;Ward et al.,
2010). Parameters must be recalibrated for new conditions, but
this defeats the purpose of developing a model, as we are often
interested in using a model to predict how a system will respond
to new conditions that have yet to occur. If the MEP principle
fundamentally describes microbial communities, then models
based on MEP should exhibit better extrapolation performance,
since MEP would still be an appropriate objective function even
under new conditions.

A challenging and unresolved aspect of MEP principle
involves the temporal and spatial scales over which it applies
(Dewar et al., 2014a). MEP theory has been developed for
nonequilibrium steady-state systems where time is removed from
the derivation, but natural microbial communities are dynamic
and often far from steady state. For non-steady-state systems,
we have proposed the following distinctions (Vallino, 2010).
Abiotic processes, such as fire or a rock rolling down a hill,
maximize instantaneous entropy production. That is, they follow
a steepest descent trajectory down a potential energy surface
in progress toward equilibrium, but this pathway can lead to
metastable states that prevent further progress and entropy
production. For instance, the flame gets extinguished or the
rock gets stuck in a ditch partway down the hill. Biological
systems, however, have evolved temporal strategies, such as
circadian rhythms, that allow the system to take an alternate
pathway that is not as steep, but it avoids metastable traps and
enables further progress down the free energy surface. While
instantaneous entropy production is lower in biological systems,
when averaged over time, the integrated entropy production is
greater than abiotic processes. Since MEP theory proposes that
system configurations that produce more entropy are more likely
to prevail (Lorenz, 2003), the higher average entropy production
by biological systems allow them to persist over abiotic processes,
at least in some situations. Similarly, when considering a spatial
domain, entropy production can either be maximized locally at
each point in the domain, or entropy production at each point
can be adjusted so that entropy production is maximized globally
over the entire domain. A simple numerical study indicated
that when a system organizes over space, entropy produced by
global optimization can exceed that from local optimization,
but this requires spatial coordination by the community, while
abiotic systems are likely to only maximize entropy production
locally (Vallino, 2011). This paper will explore how changes in
time and space scales over which entropy is maximized alters
model predictions of microbial biogeochemistry. To provide
some grounding in reality, model predictions are compared to
biogeochemical observations. The purpose of this manuscript is
to demonstrate one particular implementation of how MEP can

FIGURE 1 | Schematic of catalysts and associated reactions used in the MEP

model for Siders Pond. Functional groups include:SPhy , phytoplankton,

purple, 2 rxns;SGSB, green sulfur bacteria, brown, 2 rxns;SGz , aerobic

grazers, red, 8 rxns;SAGz , anaerobic grazers, green, 8 rxns;SBac, aerobic

organoheterotrophic bacteria, blue, 3 rxns;SSRB, sulfate reducing bacteria,

magenta, 3 rxns;SPH, photoheterotrophs, cyan, 1 rxn;SSOx , sulfide

oxidizing bacteria, orange, 1 rxn. Other abbreviations: hν, photon capture; CL,

labile organic carbon; CD, refractory organic carbon; PD, refractory organic

phosphorous. See Table 2 for qualitative representation of functional reactions

and section 2.7 of the Supplementary Material for stoichiometrically

balanced reactions.

be used to describe microbial biogeochemistry in natural systems
that goes beyond a simple conceptual model, but ours is certainly
not the only approach.

METHODS

This section describes Siders Pond sample collection procedures
and sample analyses followed by the development of the MEP
model and associated 1D transport model for Siders Pond.

Siders Pond
Site Description
Siders Pond is a small coastal meromictic kettle hole (volume:
106 m3; area: 13.4 ha; maximum depth: 15m) that receives
approximately 1× 106 m3 of fresh and 0.15× 106 m3 of saltwater
each year (Caraco, 1986). The latter input occurs via a small
creek that connects the pond to Vineyard Sound approximately
550m to the south. Tritium-helium water dating confirmed
vertical mixing across two observed chemoclines, but permanent
stratification is maintained because the saltwater inputs enter
the pond at depth, mix upward and become entrained with
freshwater before exiting the pond (Caraco, 1986). Caraco (1986)
also characterized N and P loading to the pond (50 g N m2 y−1

and 1.3 g P m−2 y−1, respectively), and an N+P enrichment
study (Caraco et al., 1987) showed phytoplankton to be P limited,
especially in the low salinity surface waters. Previous studies show
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Siders Pond is eutrophic averaging 16mg m−3 chlorophyll a
(Chl a) in surface waters (but can exceed 100mg m−3 at times)
and an annual primary productivity of 315 g C m−2 (Caraco,
1986; Caraco and Puccoon, 1986). In anoxic bottom waters,
bacterial Chl c, d and e associated with photosynthetic green
sulfur bacteria averages 20mg m−3 (purple sulfur bacteria were
not found in high concentration), but BChl cde was also observed
to reach high concentrations at times (> 75mg m−3). Even
though green sulfur bacteria could attain high concentrations,
their productivity was only 6% of the oxygenic photoautotroph
(cyanobacteria + algae) production (Caraco, 1986). Siders Pond
was chosen for this study because extensive redox cycling occurs
over a 15m deep water column, which greatly facilitates sampling
due to the large water volumes that can be readily collected
without perturbing the system.

Sampling and Measurements
Samples were collected from Siders Pond, Falmouth, MA over
a 24 h period starting at 6:45 on Jun 25th and ending at 7:37
on Jun 26th, 2015 from a single station located within the
deepest basin of the pond (41.548212◦N, 70.622412◦W). A total
of 7 casts were conducted over the 24 hr period, and each cast
sampled 8 depths to generate a 2D sampling grid designed for
comparison to model outputs (Figure 2). A Hydrolab DS5 water
quality sonde (OTT Hydromet, GmbH) was connected to a
Hydrolab Surveyor 4 handheld display and used to record depth,
temperature, salinity, pH, dissolved oxygen (DO), photosynthetic
active radiation (PAR), and in situ Chl a fluorescence. All sensors
were calibrated per manufacturer’s instructions one day prior to
sampling. One end of a 20m long section of vinyl tubing with
a 1 cm inside diameter was attached to the water quality sonde,
while the other end passed through a Geopump 2 (Geotech, CO)
peristaltic pump and then connected to 25mm polypropylene,
acid washed, in-line Swinnex filter holder (Millipore, MA), which
housed a GF/F glass fiber filter (Whatman, GE Healthcare) that
had been ashed at 450◦C for 1 hr. At all depths, the vinyl tubing
was first flushed for at least 2min, sample collection vials were
washed twice with filtrate and GF/F filters where changed as
needed to maintain high flow. This design allowed water samples
to be collected at the desired depths and processed on location
then preserved on ice or dry ice for later analysis as described
below.

Unless otherwise noted, all samples were filtered as
described above and stored in 20mL acid-washed, high-
density polyethylene scintillation vials (Fisher Scientific).
Samples were preserved for later analysis as follows. Inorganic
phosphate: 15mL samples were amended with 20 μL of 5N
HCl and placed on dry ice. Dissolved inorganic carbon (DIC)
and sulfate: samples were collected in 12mL exetainers (Labco,
UK) by overfilling bottles from the bottom up, and then capped
without bubbles and placed on ice. Hydrogen sulfide: while filling
exetainers, 25 μL of sample was pipette transferred to 6mL of
2% zinc acetate in a 20mL scintillation vial and place on ice.
Dissolved organic carbon (DOC): 25mL of sample was collected
in previously ashed 30mL glass vials to which 40 μL of 5N HCl
was added then stored on ice. Particulate organic carbon (POC):
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FIGURE 2 | Layout of the Siders Pond 2D (t, z) sample grid. Samples were

collected over a 24 h diel cycle starting at ∼ 6:00 on 25 Jun 2015 and ending

at ∼6:00 on 26 Jun 2015. Samples were collected at 0.5, 2, 3, 4, 6, 8, 10,

and 12m.

approximately 300mL of sample was passed through new, ashed,
25mm GF/F filter then stored in a plastic Petri dish on dry ice.

Samples were analyzed at the Ecosystems laboratory, MBL
as follows. Phosphate: samples were stored at −20◦C then later
analyzed following the spectrophotometric method of Murphy
and Riley (1962) on a UV-1800 spectrophotometer (Shimadzu,
Kyoto, Japan). DIC: samples were immediately run on return
to MBL on an Apollo AS-C3 DIC analyzer (Apollo SciTech,
DE). Sulfate: samples were sparged with N2 to strip H2S
on return to MBL and stored at 4◦C then analyzed using
ion chromatography on a Dionex DX-120 analyzer (Dionex,
Sunnyvale, CA). Hydrogen sulfide: samples were briefly stored
at 4◦C for 5 days then analyzed using the spectrophotometric
method of Gilboa-Garber (1971). DOC: samples were stored
at 4◦C then run on a Shimadzu TOC-L high temperature
total organic carbon analyzer at 720◦C. POC: samples were
stored at −20◦C then analyzed on a Thermo Scientific FLASH
2000 CHN analyzer using aspartic acid standards. To facilitate
model comparison to observations, Chl a was estimated from
modeled output of phototroph biomass concentrations using
12.

([
SPhy

]
+ [SGSB]+ [SPH]

)
/θC :Chla, where θC :Chla is the

C:Chl a ratio, which was set to 50 μg C (μg Chl a)−1

(Sathyendranath et al., 2009).

Model Development
The equations used to model biogeochemistry in Siders Pond
are provided in detail in the Supplementary Material, so the
descriptions in this section focus primarily on model concepts
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that form the basis of the modeling approach and extensions to
previous studies. The model consists of three main components:
(1) a set of biologically catalyzed reactions that constitute the
distributed metabolic network of the microbial community,
including predators such as protist and viruses; (2) a 1D transport
model; (3) an optimization component in which control variables
that govern reaction stoichiometry, kinetics and thermodynamics
are determined so as to maximize internal entropy production
over a specified interval of time and space. We describe briefly
below the three model components, but we focus first on the
representation of the metabolic network, as this forms the
foundation of the approach, and includes the concentrations
of 11 chemical constituents and 8 functional groups (Figure 1,
Table 1).

Catalysts and Metabolic Reaction Network
Our approach views a complex microbial community as a
collection of catalysts (denoted with the special symbol Sj with
the subscript j meaning any of the 8 functional groups in
Figure 1) that each have a subset of nr, j functional reactions
they catalyze. The catalyst has an elemental composition given
by CHα

S
Oβ
S
Nγ
S
Pδ
S
. For this study all catalysts are assigned

the same composition as yeast with associated thermodynamic
properties (Battley et al., 1997), but this is not an overly
constraining approximation (Vallino et al., 2014) and can be
easily relaxed if needed. The catalysts and reactions included in
the metabolic network represent the capabilities of the entire
microbial community, but the reactions are distributed across nS
catalysts (8 for the case of Siders Pond, Figure 1), just as functions
are distributed across phyla in natural communities (Vallino,
2003). The reactions are highly simplified and condensed,
and consist of two essential components: an anabolic reaction
that synthesizes catalyst from environmental resources, and a
catabolic reaction that provides free energy to drive the anabolic
reaction forward. A highly simplified list of metabolic reactions
for the Siders Pond model is given in Table 2. To convey the
basic ideas, we consider below the phyla responsible for sulfate
reduction for chemotrophy and phytoplankton for phototrophy.

chemotrophyh
The catalyst SSRB represents the capabilities of sulfate reducing
bacteria (SRB) that oxidize labile organic matter, CL, using sulfate
as the electron acceptor. The anabolic and catabolic reactions are
given by,

CL + γSNH3 + δSH3PO4 + aA1, SRBH2SO4 → SSRB

+ aA1, SRBH2S(aq)+ bA1,SRBH2O (1)

CL +
1

2
H2SO4 → H2CO3 +

1

2
H2S

(
aq

)
, (2)

respectively, where the stoichiometric coefficients, aA1, SRB and

bA1,SRB, are determined from elemental balances around O and H.
Both reactions above must be catalyzed by SSRB, so the reaction
rates are proportional to the concentration of the catalyst, cSSRB

,
present (note, we also use bracket nomenclature, [SSRB], for
concentration below). These two reactions can be combined by

introducing a reaction efficiency variable, εSRB, to produce an
overall reaction representing growth and respiration of sulfate
reducing bacteria, r1,SRB, given by,

CL + εSRB
(
γSNH3 + δSH3PO4

)

+

(
1

2
+ εSRB

(
aA1, SRB +

1

2

))
H2SO4 → εSRBSSRB

+ (1− εSRB)H2CO3 +

(
1

2
+ εSRB

(
aA1, SRB +

1

2

))
H2S

(
aq

)

+ εSRBb
A
1,SRBH2O. (3)

The reaction efficiency variable, εSRB, is one of two classes of

optimal control variables and a central design feature of the
MEP model. As εSRB approaches 1, Equation (3) represents
100% conversion of labile carbon plus N and P resources to
catalyst, while as εSRB approaches 0, the reaction changes to
100% anaerobic combustion of labile carbon. From an entropy
production perspective, only the catabolic reaction dissipates
significant free energy, so εSRB should be set to zero to maximize
entropy production; however, the catabolic reaction cannot
proceed without catalyst. There exists, then, an optimum value
of εSRB that produces just enough SSRB catalyst to dissipate the
chemical potential between CL and H2SO4, but εSRB must change
as a function of CL and H2SO4 supply rates as well as N and P
availability. Conceptually, the MEP problem is to determine how
εSRB should change over time and space to maximize free energy
dissipation; however, there are a few other important details.

Gibbs free energies of reaction, 	rGi,j, are calculated using
Alberty’s (2003) approach, which accounts for substrate activities,
pH and temperature. For chemotrophic reactions, an adaptive
Monod equation parameterized by εj accounts for the tradeoffs
between substrate affinity, maximum specific growth rate
and growth efficiency and can approximate oligotrophic to
copiotrophic growth kinetics by varying εj between 0 and 1
(Algar and Vallino, 2014; Vallino et al., 2014). In addition to this
kinetic constraint, FK , reaction rates, ri,j, are also constrained by
reaction thermodynamics, FT , as described by La Rowe et al.
(2012). Consequently, the rates of chemotrophic reactions take
the following general form,

ri,j = ν∗ε2j 
i,j

[
Sj

]
FK(c, εj; κ

∗)FT(�rGi,j), (4)

where c are substrate concentrations, ν
∗

and κ
∗

are universal
constants and 
i,j is the second optimal control variable class.
Since each catalyst, Sj, can catalyze nr,j sub-reactions (Table 2),

i,j determines the fraction of catalyst j, Sj, that is allocated
to reaction ri,j. For instance, the sulfate reducing bacteria have
two others reactions in addition to r1,SRB, Equation (3) (Table 2).
Reactions r2,SRB and r3,SRB allow SRB to decompose recalcitrant
organic carbon, CD, and phosphorous, PD, into labile organic
carbon, CL, and inorganic phosphate, respectively, and 
i,SRB

determines the fraction of protein allocated to each of the three
reactions. Consequently, each 
i,j is bound between 0 and 1,
and 
i,j must sum to unity over all i for each catalyst; that is,
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TABLE 1 | Names of state variables and associated symbols.

Variable Sym. Variable Sym.

Salt cSal Phytoplankton c
SPhy

Dissolved oxygen cO2
Green sulfur bacteria c

SGSB

Dissolved inorganic carbon cH2CO3
Aerobic predators c

SGz

Inorganic phosphate cH3PO4
Anaerobic predators c

SAGz

Sulfate cH2SO4
Aerobic organoheterotrophic bacteria c

SBac

Hydrogen sulfide cH2S
Sulfate reducing bacteria c

SSRB

Phytoplankton carbohydrates cCPhy Photoheterotrophs c
SPH

Green sulfur bacteria carbohydrates cCGSB
Sulfide oxidizing bacteria c

SSOx

Labile organic carbon cCL

Refractory organic carbon cCD

Refractory organic phosphate cPD

All state variables represent concentrations in mmol m−3, except for salt, which is in PSU. Concentrations of NH3 (cNH3
) and detrital N (cND ) are included in chemical reactions for

stoichiometric and thermodynamic calculations, but were held constant at 5 and 10 mmol m−3, respectively, in all simulations.

TABLE 2 | Reactions associated with the 8 biological catalysts,Sj , used to model microbial biogeochemistry in Siders Pond, where ri,j represents sub-reaction i of

biological catalystSj .

Rxn. Abbreviated Stoichiometry Cat.

r1,Phy H2CO3 + hν → CPhy +O2 SPhy

r2,Phy CPhy + NH3 + H3PO4 + O2 →SPhy + H2CO3 SPhy

r1,GSB H2CO3 + H2S+ hν → CGSB + H2SO4 SGSB

r2,GSB CGSB + NH3 + H3PO4 + H2SO4 →SGSB + H2CO3 + H2S SGSB

r1−8,Gz Si + Ci + O2 →SGz + H2CO3 + CD + NH3 + ND + H3PO4 + PD + CL SGz

r1−8,AGz Si + Ci + H2SO4 →SAGz + H2CO3 + CD + NH3 + ND + H3PO4 + PD + H2S+ CL SAGz

r1,Bac CL + NH3 + H3PO4 + O2 →SBac + H2CO3 SBac

r2,Bac CD → CL SBac

r3,Bac PD → H3PO4 SBac

r1,SRB CL + NH3 + H3PO4 + H2SO4 →SSRB + H2CO3 + H2S SSRB

r2,SRB CD → CL SSRB

r3,SRB PD → H3PO4 SSRB

r1,PH CL + NH3 + H3PO4 + hν →SPH + H2CO3 SPH

r1,SOx H2CO3 + H2S+O2 + NH3 + H3PO4 →SSOx + H2SO4 SSOx

There are a total of 28 reactions, whereSGz andSAGz each catalyzed 8 sub-reactions. Reactions are shown to emphasize function only. Complete reaction stoichiometries, including

influence of optimal control variables, are given in section 2.7 of the Supplementary Material. See caption of Figure 1 for nomenclature.

∑nr,j
i=1 
i,j = 1. An example of how FK , 	rGi,j, and FT vary

over time and space to influence reaction rates of sulfate reducing
bacteria is given in Supplementary Material 4.1, Figure S3.

phototrophy
In this version of the MEP model we introduce catalysts
associated with phototrophic growth, specifically phytoplankton
(Phy), SPhy, anaerobic green sulfur bacteria (GSB), SGSB,
and photoheterotrophs (PH), SPH . Both Phy and GSB are
modeled similarly using two sub-reactions (Table 2). One sub-
reaction couples photon capture that drives CO2 fixation into
carbohydrates, CPhy and CGSB, and a second sub-reaction
converts carbohydrates into biomass in a manner analogous
to growth of chemotrophs described above. We focus on

phytoplankton here because development for GSB is similar, and
can be found in the Supplementary Material.

The carbon fixation reaction for phytoplankton is given by,

εPhyH2CO3 + n1,Phyhν → εPhy
(
CPhy +O2(aq)

)
(5)

where hν are captured photons of frequency ν, h is Plank’s
constant and n1,Phy is the moles of photons needed to fix 1 mole
of CO2 at 100% efficiency (i.e., εPhy = 1). The Gibbs free energy
for a mole of photons is given by

�rGγ = −ηIhνNA, (6)

where NA is Avogadro’s number and ηI is the thermodynamic
efficiency for converting electromagnetic radiation into work
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(Candau, 2003). If 	rGCPhy
is the Gibbs free energy for fixing a

mole of H2CO3 into CPhy plus O2, then moles of photons needed
to fix 1 mole of CO2 is given by,

n1,Phy = −
�rGCPhy

�rGγ

, (7)

and the Gibbs free energy of reaction for CO2 fixation defined by
Equation (5) is given by,

�rG1,Phy = −
(
1− εPhy

)
�rGCPhy

. (8)

In this formulation, εPhy governs the efficiency for the
conversation of electromagnetic potential into chemical
potential. If 100% of photosynthetic active radiation is converted
to chemical potential, no entropy is produced, and the free
energy of reaction for Equation (5) is zero, so the reaction will
not proceed due to thermodynamic constraints. However, as εPhy
is decreased, some photons are dissipated as heat, which drives
the reaction forward, and all photons are dissipated as heat when
εPhy = 0, but no catalyst is synthesized.

The reaction rate for CO2 fixation depends on the rate of
photon capture, which is given by,

�IPhy = kp
1,Phy[SPhy]I(t, z) (9)

where kp is the coefficient for light absorption by particles,

1,Phy[SPhy] is the fraction of phytoplankton catalytic machinery
allocated to capturing photons (i.e., chlorophyll and electron
transfer proteins), and I(t, z) is light intensity (mmol photons
m−2 d−1) at time t and depth z. Consequently, the reaction rate
for CO2 fixation is given by,

r1,Phy =
�IPhy

n1,Phy
FK

(
c, εj; κ

∗
)
FT

(
�rG1,Phy

)
, (10)

where FK and FT are the kinetic and thermodynamic drivers,
respectively. This reaction has similarities to those typically
used to describe phytoplankton growth (Macedo and Duarte,
2006), but our derivation focuses not on the local light intensity
level, but rather on how much light is actually intercept by the
phytoplankton, as governed by kp
1,Phy[SPhy]I, and how much
of that free energy is actually used to drive carbon fixation, as
governed by εPhy. As evident in Equation (10), the maximum
rate is directly tied to the rate of photon interception, 	IPhy, not
by an arbitrary maximum specific growth parameter. The second
reaction used by Phy and GSB (Table 2) is simply the conversion
of reduced organic carbon, CPhy and CGSB, into more catalyst or
CO2 depending of the value of εPhy.

The reaction for photoheterotrophs (PH) differs slightly from
that above. In this case only one reaction is used (r1,PH , Table 2),
where photon capture is linked to the conversion of labile
carbon into PH catalyst. As above, photons captured can also be
dissipated as heat for εPH < 1, or the free energy can be used to
drive biosynthesis (εPH > 0), where photon free energy replaces
chemical free energy used in chemotroph reactions.

Transport Model
Siders Pond is horizontally well mixed, so an advection-
dispersion-reaction (ADR) model that includes particle sinking
was used to approximate vertical transport of the 19 state
variables (Figure 1). The origin of the vertical coordinate, z,
is defined at the pond’s surface, and the axis points in the
positive direction downward toward the benthos and reaches a
maximum depth of 15m. Siders Pond 3D bathymetry surface
was rendered from a contour plot in Caraco (1986), and an
equation for cross-section area as a function of depth was
derived therefrom (Figure S1). Equations for vertical volumetric
flow rate, lateral groundwater inputs and seawater intrusion at
the bottom boundary were derived from Caraco (1986), who
used both tritium-helium-3 dating combined with mass balance
calculations to estimate freshwater inputs and seawater intrusion.
An equation for the dispersion coefficient was derived by fitting
simulated salinity profiles to observations collected during this
study.

The primary external drivers in themodel are temperature, pH
and photosynthetic active radiation. Surface irradiance was based
on a model of solar zenith angle (Brock, 1981), which assumes
a cloudless sky. To predict PAR light intensity as function of
time and depth, a standard light adsorption model was used
that includes coefficients for light absorption by water, kw, and
particulate material, kp.

Neumann boundary conditions were used for state variables
at the pond’s surface and gas transport for O2, CO2, and
H2S across the air-water interface was accounted for using a
stagnant-film model. Robin boundary conditions were used for
the bottom boundary based on the flux of material entering the
boundary associated with the intrusion of seawater diluted with
groundwater. In addition, aerobic and anaerobic decomposition
of sinking organic matter from the water column contributed to
a sink for O2 and H2SO4, and a source for H3PO4, H2CO3, and
H2S to the overlying water.

Entropy Production and Optimization

Entropy-production
Entropy production occurs when an energy potential is destroyed
and dissipated as heat to the environment, but not when the
potential is converted to another potential. For example, a flame
converting chemical potential into heat or light being absorbed
by water both result in maximum entropy production; these are
irreversible processes and the Gibbs free energy is destroyed.
On the other hand, entropy is not produced if electromagnetic
potential is converted reversibly into chemical potential, but
thermodynamic theory requires that reversible reactions must
proceed infinitely slowly. In the model, as the reaction efficiency
for phytoplankton, εPhy, approaches 1, electromagnetic potential
is converted to chemical potential without entropy production,
but the thermodynamic force, FT , drivers the reaction rate to
0, and as εPhy approaches zero, all electromagnetic potential is
dissipated as heat, but no catalyst is produced, as evident in Eq.
(5). Consequently, living organisms operate between these two
extremes. For organisms to grow at a non-zero rate, an energy
potential must be partially dissipated and some entropy must be
produced.
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Instantaneous entropy production per unit volume, σ̇i,j, for
chemotrophic reactions is readily calculated as the product of
reaction rate times Gibbs free energy of reaction (Vallino, 2010)
divided by temperature, T, as given by,

σ̇i,j = −
1

T
�rGi,jri,j. (11)

Average entropy production,
〈
σ̇i,j

〉
, is calculated by integrating σ̇i,j

over an interval of time, 	t, as given by,

〈
σ̇i,j

〉
=

1

�t

∫ t+�t

t
σ̇i,jdτ . (12)

The value of�t is unknown, but it is the fundamental parameter
of interest in this study, because it represents the time scale over
which biology has evolved to operate.

Entropy production associated with the dissipation of
electromagnetic radiation is readily calculated from the Gibbs
free energy for photons, Equation (6), and photon capture
rate, Equation (9). The photon free energy can be dissipated
as heat along two pathways: (1) interception by water or
(2) particles, such as bacteria and grazers, as well as by
the non-photosynthetic components of phytoplankton. Photons
intercepted by the photosynthetic machinery of phototrophs can
be either dissipated as heat, if εj = 0, or all energy potential can
be transferred to chemical potential, if εj = 1, but typically it is
a combination of both, so that 0 < εj < 1. Consequently, total
entropy production, σ̇� , is the sum of three processes: entropy
production by light absorption by water, σ̇W , entropy production
by light absorption by particles, σ̇P, and entropy production by
chemical reactions, σ̇R, including photoreactions. All entropy
production terms are accounted for in the MEP optimization
problem, including that from light absorption by water and
particles.

MEP-optimization
The stoichiometry, thermodynamics and kinetics of the 28
reactions that comprise the metabolic network (Table 2,
Figure 1) vary as a function of the eight εj optimal control
variables, and the partitioning of biological structure, Sj, to
sub-reactions ri,j that depends on the values of the 
i,j control
variables, of which there are 20. A solution to the MEP model,
and associated microbial biogeochemistry, is determined by
adjusting εj and 
i,j over �t time and 1D space to maximize
entropy production, the details of which are provided in
Supplementary Material section 3.2, but also see Vallino et al.
(2014). As�t approaches 0 in Equation (12), the average entropy
production,

〈
σ̇i,j

〉
, approaches the instantaneous value, σ̇i,j, and

describes abiotic processes based on our hypothesis. Increasing
�t permits other solutions that are not constrained to the steepest
descent trajectory. By changing values of εj and 
i,j over time
and space, pathways that avoid the ditch halfway down the hill
are allowed, or strategies that anticipate the sun rising in the
morning can be exploited. The critical aspect of the optimization
is choosing the appropriate time interval over which to maximize
entropy production and whether local or global optimization
should be used (Vallino, 2011); consequently, these two aspects

are the focus of this manuscript and form the bases of the Results
section.

Physical parameters and model skill assessment
If the MEP model developed here were cast as a conventional
biogeochemistry model, there would be 89 biological parameters
associated with growth kinetics. Instead, there are 28 optimal
control (OC) variables (8 εj and 20 
i,j), but only one
biological parameter, because the OC variables are determined
by maximizing entropy production described above. The sole
biological parameter, 	t, specifies the time scale over which
entropy is maximized, Equation (12), and its impact on solution
dynamics is the focus of this manuscript. There are 11 uncertain
physical parameters, 9 associated with particulate matter sinking
velocities and two associated with light absorption by water and
particles. Since fitting model output to observations is not an
indication of good model forecasting fidelity, we only crudely
adjusted the 11 physical parameters so that model outputs were
within an order of magnitude of observations. These adjustments
were made with fix values of the 28 OC variables that were set
arbitrarily. The objective was to get the physics to reasonably
approximate that occurring in Sider Pond.

To determine model performance, 2D linear interpolation
was used to extract values of model state variables at times
and depths corresponding to those taken for observations.
Root mean squared errors were then calculated between
interpolated model outputs and observations to quantify model
skill (Fitzpatrick, 2009). The computational approach used
for solving the 1D advection-dispersion-reaction equation is
described in Supplementary Material section 2.9 and the
approach used for solving the optimal control problem is
described in Supplementary Material section 3.2.

RESULTS

All solutions presented here are from local entropy maximization
at 10 depths (0, 1, 2, 3, 4, 6, 8, 10, 12, and 15m). We investigated
two optimization time intervals, �t, for entropy maximization,
a short interval of 0.25 days and a long interval of 3 days.
Simulations were started on May 19th, but only the last 6
days of simulations from Jun 21st to Jun 27th are shown here
and compared to observations collected on Jun 25th and 26th
(Figure 2). Our results focus on how these two solutions compare
to observations in the Simulations Compared to Observations

section as well as how the short and long interval optimization
windows differ from each other in theComparison Between SIO

and LIO Simulations section.

Simulations Compared to Observations
Solutions obtained from the short (0.25 day) and long (3
day) interval optimizations are compared to biogeochemical
observations from Siders Pond that were collected to form a 2D
sample grid on Jun 25th and 26th, 2015 (Figure 2). Simulated
profiles for photosynthetic active radiation (PAR), Chl a and
dissolved oxygen (DO) are compared to observations in Siders
Pond in Figure 3. The short interval optimization (SIO) shows
PAR extending to nearly the bottom of the pond (Figure 3A),
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FIGURE 3 | Contour plots of photosynthetic active radiation (PAR) (A–C), chlorophyll (Chl) a concentration (D–F) and dissolved oxygen (DO) (G–I) for six day

simulations using short interval optimization (SIO) (left column), long interval optimization (LIO) (center column) and for observations collected from Siders Pond over a

24 h period on Jun 25 to Jun 26 2015 (right column). Rectangle (dashed white lines) in simulation plots corresponds to time and depths where observations are

comparable (i.e., Jun 25/26, 0.5 to 12m). Actual observations are shown as white circles with black perimeters (see also Figure 2).

while PAR from the long interval optimization (LIO) (Figure 3B)
more closely matches observations (Figure 3C). The prediction
for Chl a in both simulations do not match observations very
well (Figures 3D–F), but this is partially due to how Chl a was
estimated, since Chl a is not specifically modeled. The Chl a in
vivo observations show a peak Chl a around 5m, while both
simulations have peaks around 12m, but those peaks are due to
accumulation of sinking phytoplankton rather than productivity
at that depth. The LIO simulation does show a secondary Chl a

peak developing around 3m, but it is weaker than observations
(∼ 6 vs. 40 μg L−1). Based on DO, the SIO shows anaerobic
conditions begin at 6m, while the LIO shows that occurring
at 10m. The observed transition to anoxia splits between the
two simulations at 8m. Observations also show a subsurface
DO maximum at 3.5m, while both simulations show max DO
closer to 1.3m. Furthermore, the SIO shows a decreasing DO
max with time, while the LIO shows an increase over time, and
the maximum reaches 800 mmol m−3 vs. 480 for observations.
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In general, the SIO simulations show less phototrophic activity
while LIO shows greater activity than what the observations
indicate. The LIO solutions show better fits to observations for
PAR and Chl a based on RMSE, while the SIO shows a better fit
to DO (Table 3).

Simulations of substrate concentrations for autotrophs,
namely inorganic phosphate and dissolved inorganic carbon
(DIC), show qualitative agreement to observations for both
SIO and LIO solutions (Figure 4), but some discrepancies
are apparent. The phosphate chemoclines occur around 10,
11, and 8m for the SIO, LIO, and observations, respectively
(Figures 4A–C). Above the phosphate chemocline, the SIO
simulation shows slightly elevated levels of H3PO4 (∼0.3 mmol
m−3) in the surface and 5m layers, compare to observations
(Figure 4C), which are near the level of detection (0.03 mmol
m−3) except for a few spikes. Below the phosphate chemocline,
observations show slightly higher accumulations of phosphate,
approaching 22 mmol m−3, while the SIO and LIO simulations
show max concentrations closer to 16 and 19 mmol m−3,
respectively. For DIC, both SIO and LIO simulations show
much lower DIC concentrations below 10m (3,000 and 5,400
mmol m−3, respectively) than observed in Siders Pond (16,500
mmol m−3), which would indicate much higher anaerobic
remineralization in the pond than occurs in the simulations. The
SIO and LIO also show greater draw down of DIC in the surface
water above 2 and 4m respectively, and the LIO simulation
shows minimum DIC approaching just 2 mmol m−3 at 1m,
while minimum observed value is above 660mmol m−3. The SIO
simulation fits phosphate observations slight better than the LIO
simulation, but LIO does better at fitting the DIC observations
(Table 3).

Simulations of hydrogen sulfide show a chemocline at
approximately 9 and 10m for the SIO and LIO solutions,
respectively, which are slightly deeper than the H2S chemocline
observed in Siders Pond at about 8m (Figures 5A–C). However,
H2S reaches concentrations as high as 7,000 mmol m−3 in
Siders Pond, while maximum concentrations only reach 900 and
2,100 mmol m−3 in the SIO and LIO simulations, respectively.
Simulations also show a peak H2S concentration at 12m, and
a decrease in concentration below 12m, which also indicates
lower anaerobic respiration in the simulations. Simulated sulfate
concentrations in the upper portion of the water column (0
to 4m) are similar to those observed (Figures 5D,E), but
the simulations show an abrupt sulfate chemocline starting at
about 8m, while observations show a more gradual increase in
sulfate with depth. Furthermore, sulfate reaches much higher
concentrations in the simulations at depth than do observations,
showing maximums of 15,500 mmol m−3 in both simulations,
while observation maximum is only 9,000 mmol m−3. The lower
simulated concentrations of H2S and the higher simulated sulfate
concentrations indicate that sulfate reduction in the model is
lower than that actually occurring in Siders Pond, but the LIO
simulations fit observations better for both H2S and H2SO4 than
do the SIO simulations (Table 3).

The last of the observations are dissolved organic carbon
(DOC) and particulate organic carbon (POC) concentrations
(Figure 6). For simulations, DOC is a derived quantity based on

the sum of state variables [CL] and [CD], while POC is derived
from the sum of internal carbohydrate stores,

[
CPhy

]
and [CGSB],

plus the concentrations of all biological structures,
[
Sj

]
. In the

water column above 12m, the SIO simulation shows very low
concentrations of DOC (∼ 1 mmol m−3), but then increases
rapidly to a maximum of 1,900 mmol m−3 (Figure 6A). The
LIO simulation shows a similarly high DOC concentration at
14m, but above 12m, the DOC concentration ranges from 2
to 140 mmol m−3, which is closer to those observed in Siders
Pond, which range from 200 to 300 mmol m−3 above 10m,
and increase to a maximum of about 1,000 mmol m−3 at 12m.
Similar to DOC, POC in the SIO simulation shows low values
(< 30 mmol m−3) above 6m, but POC peaks to 1,000 mmol
m−3 at 12m (Figure 6D). The POC concentrations from the
LIO simulation are closer to observations, but the mid-water
POC maximum in the LIO simulation is approximately 500
mmol m−3, while the observations peak at 280 mmol m−3

around 4m. Like the SIO simulation, the LIO simulation also
shows high POC concentrations below 10m, which was not
observed in Siders Pond. It is possible that DOC and POC
may reach higher concentrations in the funnel-like basin of
Siders Pond below 12m, but samples were not collected there.
While the LIO simulations show better fit to DOC observations,
the SIO simulations fit the POC observations better (Table 3).
Overall, the LIO simulations fit six observations better, while
the SIO simulations of fit three observations better, which
indicates the LIO simulations are overall closer to observations
(Table 3). On a qualitative measure, the LIO simulation produces
a phytoplankton bloom near the surface of the pond (Figure 3),
which is consistent with multiple years of student collected
observations from Sider Pond. In that regard, the LIO solution
appears better at predicting this important feature of Siders
Pond.

Comparison Between SIO and LIO

Simulations
Since the MEP optimization model generates a large number of
outputs, this section highlights some of those outputs to contrast
the simulations based on the short (0.25 d) interval optimization
(SIO) to that from the long (3 d) interval optimization (LIO).
Consider entropy production, which is the variable that is
being sequentially maximized over a 0.25 d interval (SIO) or
a 3 d interval (LIO) at 10 different depths (Figure 7). Total
entropy production, σ̇� , for the SIO and LIO simulations differ
significantly, in that σ̇� in the SIO solution is spread out over a
12m water column (Figure 7A) vs. the LIO solution (Figure 7E),
where most of the entropy production occurs in the top 3m
of the pond. Furthermore, peak entropy production in the LIO
simulation is 7.5 times great than the SIO solution (9.8 vs. 1.3
GJ m−1 K−1 d−1), and the total integrated entropy produced
over the water column and over the 6 day simulation, σT , was
21.3 GJ K−1 and 36.5 GJ K−1 for the SIO and LIO simulations,
respectively. For comparison, if the pond was sterile, σT would
equal 12.4 GJ K−1 from light absorption in the water column.
The 71% higher total integrated entropy, σT , produced by the LIO
simulation illustrates that extending the optimization time scale
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TABLE 3 | Root mean squared errors between model predictions and observations for the short (SIO, t = 0.25 d) and long (LIO, t = 3.0 d) interval optimizations.

�t (d) PAR (μE m−2 s−1) Chl a (μg L−1) DO (μM) H3PO4 (μM) DIC (μM) H2S (μM) H2SO4 (μM) DOC (μM) POC (μM)

0.25 484. 32.9 137. 4.69 6050. 2500. 3650. 388. 167.

3.00 189. 24.4 212. 4.88 5610. 2280. 3390. 361. 198.

Better (i.e., lower) scores are highlighted in bold italic font face.
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results in greater entropy production, which is consistent with a
previous study (Vallino et al., 2014).

The different contributors to total entropy production, namely
by reaction, σ̇R, water, σ̇W , and particles, σ̇P, also differ
significantly between the two simulations. For instance, total
integrated entropy production associated with reactions was
actually greater in the SIO than the LIO simulation (Figure 7B
vs. Figure 7F), as well as exhibited a greater maximum σ̇R
(0.28 vs. 0.26 GJ m−1 K−1 d−1 for SIO versus LIO); however,
entropy production by reaction during the day is rather small
(< 25% in the upper 5m) compared to light dissipation by
water or particles, but the two simulations differ here as well.
The SIO simulation dissipates most of the incoming radiation
by water absorption in the upper 5m of the water column
(Figure 7C vs. Figure 7G), while the LIO simulation dissipates
most of the electromagnetic potential via absorption by particles

(Figure 7D vs. Figure 7H). As evident in the POC (Figure 6)
and Chl a (Figure 3) concentrations, the LIO simulation
produces more biomass in the upper portion of the water
column, and biomass is effective at absorbing and dissipating
light.

An analysis of phytoplankton (Phy) growth by the SIO and
LIO simulations (Figure 8) illustrates not only how the two
simulations differ, but also some of the mechanics of the MEP-
based optimization approach. Phytoplankton density attains a
maximum of 20 mmol m−3 in the LIO simulation by June 27th,
but Phy are effectively absent in the SIO simulation, attaining
a maximum of only 0.1 mmol m−3 (Figures 8A,F). While it is
possible that the low phytoplankton density in the SIO simulation
could be due to extensive predation, this is not the case because
the rates of CO2 fixation (r1,Phy, Table 2) and conversion of
fixed C to biomass (r2,Phy, Table 2) are two orders of magnitude
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lower in the SIO versus LIO simulation (Figures 8B,C vs.
Figures 8G,H). The differences in phytoplankton density and
reaction rates between the SIO and LIO simulations are due
to how the optimal control variables change over time and
space (Figures 8D,E,I,J). Consider how reaction efficiency, εPhy,
varies over time and space in the two simulations (Figures 8D,I).
The SIO simulation shows rapid switching between very high
efficiencies (>0.98) and very low efficiencies (<0.02) over time.
While not on all days, reaction efficiency drops to very low
levels around noon (Figure 8D), which results in high entropy
production, but at the sacrifice of fixing CO2, which is consistent
with maximizing energy dissipation on a short term time scale.
On the contrary, the LIO solution (Figure 8I) shows more
gradual changes in εPhy, operating between 0.3 and 0.4 for
most of the simulation. There is rapid changing of the biomass
allocation variable, 
1,Phy, in the LIO solution (Figure 8J),
but this makes sense, because the control variable partitions
phytoplankton biomass to the light requiring carbon fixation
reaction, r1,Phy, during peak daylight (Figure 8G), then switches
to the biosynthesis reaction, r2,Phy, at night (Figure 8H). Based
on Figure 7C, the SIO solution instead uses water for the
short term dissipation of electromagnetic potential in the pond’s
surface, but in deeper water the SIO solution does produce
biomass.

Instead of producing phytoplankton, the SIO solution
produces more green sulfur bacteria (GSB), which reach a
maximum concentration of 735 mmol m−3, compare to only 23
mmol m−3 in the LIO solution (Figures 9A,D). Furthermore,
GSB increase during the SIO simulation, while they decrease in
the LIO, which is evident in the greater biosynthesis reaction,
r2,GSB, in SIO vs. LIO solutions (Figures 9B,E) as well as in
r1,GSB (not shown). However, the value of the reaction efficiency
control variable, εGSB, does switch to low values around noon
on several days in the SIO simulation, which implies again the
solution favors entropy production over growth (Figures 9C,F).
This SIO simulation also favors much higher reaction rates of
photoheterotrophs (PH), r1,PH , compared to the LIO solution,
but interestingly, this does not lead to greater concentrations
of PH biomass, SPH (Figure 10). The reason is because high
rates for PH growth, r1,PH , are coupled with extremely low
values of growth efficiency, εPH (Figures 10B,C). Based on the
adaptive Monod equation that changes substrate affinity as a
function of ε4PH , uptake of labile organic carbon, CL, by PH
can occur at extremely low concentrations when εPH is close to
zero, but small εPH values means very little biomass is produced
as a results. This is an interesting result, as light energy is
being used to scavenge organic carbon at low concentrations,
which contributes to the low labile organic carbon observed
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in the SIO simulation (Figure 6A). Furthermore, the high
entropy production from reaction, σ̇R (Figure 7B), is almost
entirely due to PH. One of the reasons both green sulfur
bacteria and photoheterotrophs are more active in the SIO
versus LIO simulations is that light is not being intercepted by
phytoplankton like it is in the LIO simulation (Figure 8A vs.
Figure 8F).

Bacterial densities are similar in the two simulations
(Figures S4a,d), but there is significantly higher growth rate
by bacteria in the LIO simulation between 4 and 10m
(Figures S4b,e). Both simulations allocate almost all of SBac to
detrital carbon decomposition, r2,Bac, below 13m (Figures S5c,f),
but the SIO simulation also allocates biomass to detrital
carbon decomposition sporadically throughout the water column
to produce CL (Figure S4c). The anaerobic, sulfate reducing
bacteria function similarly as bacteria, but operate in the
anaerobic portion of the water column (Figures S6, S7).
Like bacteria (Bac), the sulfate reducing bacteria (SRB)
allocate biomass to detrital carbon decomposition, r2,SRB,
below 13m in both SIO and LIO simulations (Figures S7c,f)
and sporadically throughout the water column in the SIO
simulation (Figure S7c). Overall, bacteria and SRB function
in a complementary mode across the aerobic and anaerobic

portions of the water column. Similar to phytoplankton, the
control variables for both SBac and SSRB show more rapid
(bang-bang) control in the SIO compared to the LIO simulation
(Figures S5, S7). The third bacterial group, sulfide oxidizing
bacteria, SSOx, are largely unimportant in either of the 6 day
simulations.

Another significant difference between the SIO and LIO
simulations is a greater importance of predation, SGz , in the
SIO solution (Figure 11). Because predation is abstracted in the
MEP model, it represents all predation mechanisms, including
protists, predatory bacteria, viruses, and cannibalism. In addition
to dissipating chemical potential stored as biomass, predation
serves a more important task of recycling nutrients from biomass
that are allocated to metabolic functions that are not needed
under prevailing conditions. The SIO and LIO simulations show
that the concentration of SGz is more than 4 times higher in
SIO than LIO solutions, and SGz increases over time under
the SIO objective. The primary prey items in the SIO solution
are SGz (i.e., cannibalism), SBac and SPH (Figures 11B–D),
while only SBac predation is of significance in the LIO solution
(Figure 11G). Closer inspection of Figures 11B,C reveals that
predation occurs predominately at night, which is a result of
temporal changes in the partitioning control variables, 
i,Gz ,
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rather than prey concentration (not shown). High concentration
of SGz is found below 10m, but growth of grazers actually
occurs between 4 and 7m, which indicates the high SGz

concentration below 10m is due to sinking and accumulation.
Accumulation of biomass in the deep, anaerobic, portion of
the water column becomes food for anaerobic predators, SAGz ,
which are important in both SIO and LIO simulations, but are
slightly more active in the LIO simulation (Figure S8).

An interesting result that derives from the focus on dissipating
energy potentials rather than on growing organisms is the
importance of chemotrophs on dissipating electromagnetic

potential. For instance, aerobic organoheterotrophic bacteria,
SBac, are well understood as dissipaters of chemical potential,
as they typically respire significant amounts of organic carbon
(i.e., εBac < 0.5). In both the SIO and LIO simulations, however,
far more free energy is dissipated by passive light absorption
than it is by respiration (Figure 12), although the difference is
more striking in the SIO simulation (Figure 12A vs. Figure 12B).
Some prokaryotes in nature harness this abundant light energy
via expression of proteorhodopsin (Béjà et al., 2000), which is
perhaps more widespread than currently appreciated (Dubinsky
et al., 2017).
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DISCUSSION

The two primary objectives of this study were to demonstrate

that (1) a model based on free energy dissipation can reasonably
describe microbial community organization and function with

relatively few parameters and (2) that microbial systems operate
collectively over characteristic timescales that are likely longer

than what common wisdom would suggest. The secondary

objectives were to demonstrate how the model can be used in
systems with spatial dimensions and to extend the approach to

include phototrophs. While improvements could be made with
explicit data assimilation (Edwards et al., 2015), the MEP model
did a reasonable job at simulating biogeochemistry in Siders
Pond with few adjustable parameters, and the better fit of the long
interval optimization (LIO) simulation to 6 out of 9 observations
indicates that the microbial community has evolved to function
over time scales that are longer than 0.25 days (Table 3).
The MEP optimization approach removed approximately 89
parameters that would have had to be tuned if a conventional
model had been used (Ward et al., 2010). Perhaps the most
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useful aspect is that MEP provides a different perspective to
view biology (Skene, 2017). For the Siders Pond model, the
perspective focused our attention on how microbial functional
activity changes with the length of the entropy integration
interval,�t.

Temporal strategies, such as circadian clocks (Wolf and
Arkin, 2003), anticipatory control (Mitchell et al., 2009; Katz
and Springer, 2016), energy and resource storage (Schulz et al.,
1999; Grover, 2011), and dormancy (Lewis, 2010) are hallmarks
of biology, yet they are often not given much consideration
when theory and models are developed for understanding
biogeochemistry, even though temporal strategies have also been
observed in microbial communities (Ottesen et al., 2014). Here
ourmodel results indicate that different organizational timescales
can dramatically impact biogeochemistry and how microbial
communities function. For instance, the SIO simulation does not
invest resources in phytoplankton growth, because over the short
0.25 day optimization, water dissipates more electromagnetic
potential than a small increase in phytoplankton biomass over
the short interval. Instead, the SIO solution allocates resources
to growth of green sulfur bacteria (GSB) and photoheterotrophs
(PH) deeper in the water column to dissipate light not adsorbed
by water in the surface. The SIO solution also places more
resources on decomposing refractory carbon, but also on
respiring the liberated labile carbon. Grazing rates, especially
under aerobic conditions, are higher in the SIO simulations as
well. These types of resource allocations in the SIO solution
appear more consistent with R∗ or resource-ratio theory (Tilman,
1982) and r-selection (Pianka, 1970; Fierer et al., 2007); that
is, emphasis on fast growth. On the contrary, the LIO solution
appears more similar to K-selection where resources are invested
for longer term outcomes. These differences are also evident

in the control variables. In the SIO simulations, the control
variables show rapid bang-bang control fluctuations as resources
vary (Figure 8D), while the LIO solution produces more gradual
changes in control variables (Figure 8I). A microbial community
that implements temporal strategies should outcompete a
community that lacks temporal strategies, because long-term
strategies result in greater acquisition and utilization of food
resources under non steady-state conditions than short-term
strategies (Cole et al., 2015), which is evident by the 71% greater
entropy production over the 6 day simulations using LIO versus
SIO (36.5 GJ K−1 vs. 21.3 GJ K−1).

One of the main questions that arise in applying MEP is
what is the appropriate timescale over which biology organizes?
That is, in the current implementation of the model, what is an
appropriate value for�t used in the optimal control problem? In
this study two values were explored, 0.25 days for the SIO and 3
days for the LIO. These choices were based on the observation
time scale, where 0.25 day is “short” compared to 1 day, and
3 days is “long” in comparison to 1 day. Our results indicate
that the SIO solution did not match observations or expectations
as well as the LIO solution (Table 3). Comparing MEP model
output to observations for differing values of �t is one means
to explore this fundamental property of ecosystems. But is a
3 d optimization window sufficient? It seems the appropriate
MEP time scales do not depend on just the characteristic time
scales of organisms, because our study on periodically forced
methanotroph communities showed that the communities were
well adapted to 20 day cyclic inputs of energy, even though the
characteristic turnover time of bacteria is closer to hours (Vallino
et al., 2014; Fernandez-Gonzalez et al., 2016). We know that
terrestrial systems function on long timescales, at least on the
order of the four seasons, but their time scales are likely much
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longer given that individual trees can live hundreds of years, and
forest succession takes longer than that (Odum, 1969; Finegan,
1984). At this time, we do not have an answer to the question
regarding an appropriate optimization time scale for microbial
communities, but it is likely related to the time scales over which
biological predictions, acquired by evolution, can be reliably
made, such as the sun will return tomorrow, or winter is coming.
Predicting the future has obvious evolutionary advantages, but
it also results in greater dissipation of free energy and entropy
production, as evident by the higher entropy produced by the
LIO solution. We believe that determining the temporal scales
over which microbial communities operate will be important for
developing predictive biogeochemistry models, but space scales
are also import.

Strategies that coordinate function over space also lead to
greater free energy dissipation (Vallino, 2011). Some examples
of such coordination include quorum sensing (Goo et al., 2012;
Hmelo, 2017) and associated quorum policing (Whiteley et al.,
2017), long-rangemetabolic signaling (Liu et al., 2015), stigmergy
(Gloag et al., 2013), horizontal gene transfer (Treangen and
Rocha, 2011), cables and nanowires (Reguera et al., 2005; Schauer

et al., 2014), cross-feeding (Estrela et al., 2012; Rakoff-Nahoum
et al., 2016), chemotaxis (Stocker and Seymour, 2012), vertical
migration (Inoue and Iseri, 2012) and other types infochemical
exchange (Moran, 2015). Our original intent was to compare
local versus global MEP optimization, but global optimization
in the Siders Pond model did not produce biologically relevant
results due to the speed at which electromagnetic potential
is dissipated abiotically. Because water and sediments rapidly
absorb light, any water column of sufficient depth will dissipate
all incoming radiation as entropy regardless of the presence
of organisms, so an infinite number of solutions exist that
all produce the same global entropy production. However,
maximizing local entropy production at discrete depths, as was
conducted in this study, does select for a unique solution,
which our results show is biologically relevant. Our previous
study with purely chemical reactions showed that global entropy
production results in greater chemical potential destruction
(Vallino, 2011). This study indicates that if abiotic processes
can destroy an energy potential faster than biotic ones, then
local MEP optimization will be the preferred solution. Global
maximization of entropy production is more likely to be found in
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systems where energy potentials are stable with respect to abiotic
decay, such as chemical potentials. However, it seems possible
that both local and global optimization could be operating
simultaneously in systems given that both light and chemical
potentials often exist, so further studies are needed.

Other areas that could improve the MEP modeling approach
are as follows. Our metabolic network (Figure 1) was largely
based on prior knowledge about Siders Pond biogeochemistry,
but condensing genome-scale models may also be a means to
construct more realistic whole community metabolic networks
from genomic surveys (Hanson et al., 2014; Hanemaaijer et al.,
2015), and exometabolomics could be used to identify metabolite

nodes in the distributed metabolic network that are widely
exchanged between functional groups (Klitgord and Segre, 2010;
Baran et al., 2015; Fiore et al., 2015; Ponomarova and Patil, 2015).
Also, our current approach relies on non-linear optimal control
to locate MEP solutions, but this is a computationally intensive
problem, and falls under the class of problems known as control
of partial differential equations (Coron, 2007). Building on
expertise from that field could reduce computation requirements,
especially for problems involving two or three spatial dimensions,
but it might be possible to avoid the formal optimization problem
altogether. One possibility would be to use Darwinian inspired
trait-basedmodeling approaches (Follows et al., 2007; Coles et al.,
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2017), which is how biology actually solves the MEP problem.
On the other hand, MEP could be useful for developing trait
models that improve entropy production over time and space,
such as traits that include resource storage, time delays (i.e.,
dormancy), migration across fronts and boundaries to acquire
resources, clocks and oscillators, distribution and packaging
of metabolic function, predation, remineralization, and other
regulatory motifs (Wolf and Arkin, 2003). By placing emphasis
on the mechanisms of how energy potentials are destroyed over
time and space, rather than on the peculiarities of how organisms
grow and survive, can lead to new insights that can improve
our understanding of biogeochemistry and model predictions
thereof.

CONCLUSIONS

Our results demonstrate that models based on MEP can
reasonably simulate how microbial communities organize and
function in Siders Pond over time and space while using a
minimum of adjustable parameters. The improved qualitative

and quantitative agreement between model predictions and
observations using long (3 day, LIO) versus short (0.25 day, SIO)
interval optimization supports the hypothesis that biological
systems maximize entropy production over long time scales. The
modeling presented here extends the MEP approach to include
an explicit spatial dimension, and new metabolic reactions
were introduced to model phototrophs and entropy production
associated with the destruction of electromagnetic potential. By
considering the dissipation of both chemical and electromagnetic
potentials, the MEP model shows that heterotrophs, such as
bacteria, dissipate far more free energy in the photic zone by
passive light absorption than by chemical respiration. Short
interval optimization results in higher grazing rates and turnover
of organic carbon, as well as rapid (bang-bang) changes in
the reaction control variables, while long interval optimization
supports higher phytoplankton growth and standing stocks near
the surface of the pond.We also found that maximization of local
entropy production, as opposed to global entropy production,
must be used for energy potentials that are quickly dissipated
by abiotic processes, such as light absorption by water and
particles. Taken together, results validate our general conjecture
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that biological systems evolve and organize to maximize entropy
production over the greatest possible spatial and temporal
scales, while abiotic processes maximize instantaneous and local
entropy production.
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